
 - 1 -

PlaySketch: Turning Animation Sketches Into Game Logic
Richard C. Davis and Kenny T.W. Choo

School of Information Systems, Singapore Management University
80 Stamford Road, Singapore 178902

rcdavis@smu.edu.sg, kenny.choo.2012@smu.edu.sg

ABSTRACT
This paper outlines a proposed design for PlaySketch, a
video game creation system for children that uses animation
sketching and programming by demonstration techniques.
A preliminary study showed that children take naturally to
describing game logic with animation sketches. Our user
interface design structures the video game design process as
a series of sketched animations, which are run-throughs of
game activity. PlaySketch will infer game logic from new
run-throughs and from modifications to existing run-
throughs. Game logic will use terms and categories
matching those that children already use. Logic will be into
three levels of increasing variety and complexity:
properties, behaviors, and events. Understanding higher-
level logic will require children to learn more, but there will
be fewer instances in any one game. PlaySketch will also
help children learn about inferences through notifications
that explain them in context, and it will give them shortcuts
in the form of pre-defined actors.

Author Keywords
Animation; games; sketching; artificial intelligence, pen
and touch based user interfaces.

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

General Terms
Human Factors; Design; Measurement.

INTRODUCTION
Video game construction is proving itself to be a great way
to learn. Making games is excellent motivation for learning
to program [26,27], and it can help children to learn
systems thinking [9,42], critical thinking [28], media
literacy [3], design [42], and even ethics [23]. Best of all,
children have shown strong interest in making games, but
there is a problem: the need to program limits their
participation [12]. Programming intimidates many children,
and it carries a social stigma [16]. This is leading some
researchers to create game development environments that
reduce or eliminate the need for programming [3,28].

Some researchers have used programming by
demonstration (PBD) to make game development easier for
people without programming skill [18,32,33,37]. After
users create concrete objects and act out their behavior,
PBD systems infer the general rules that determine how the
game works. Research in PBD systems for video games
explored methods for editing and feedback [18,32,37] as
well as improved inference methods [17]. However, many
problems were never resolved, and few PBD systems for
video games exist today.

More recently, sketching and demonstration have been
successfully applied to animation [6,7,11,24,30,34]. While
making animations is easier than making games, animation
is still challenging for children. Sketching and
demonstration simplify this process by taking advantage of
a child’s intuitive sense of space and time. This makes it
possible to create short animations in minutes or seconds.

We are building PlaySketch, a video game construction
environment for children that combines animation
sketching with programming by demonstration. Our
preliminary work has shown that children take naturally to
animation when expressing video game behavior. We
believe that structuring video game demonstration as a
process of creating and refining animation sketches will
enable children to define complex behaviors without any
programming.

To help children make sense of PBD inferences, PlaySketch
will use terms that match childrens’ own categories for
game logic. We also plan to split PBD inferences into three
levels of increasing complexity. First, demonstrated
motions will be used to infer properties like game genre
(e.g., platformer or vertical scroller), actor roles (e.g.,
player, enemy, or item), and physical constants (e.g.,
gravity or friction). Second, PlaySketch will match
demonstrated motions to pre-defined behaviors that fit the
chosen genre or actor roles (e.g., 4-way direction, 2-way
direction, jump, or shoot). Third, more complex events will
be inferred from the ways children modify their animation
sketches. Splitting inferences into three levels like this will
limit what children must understand to make sense of
inferences. PlaySketch also will help children through the
PBD process with notifications that explain inferences and
pre-defined actors that can shortcut the process.

This paper describes our preliminary work on PlaySketch.
We begin with a review of related work and then briefly
describe a study where we observed children using sketched

Copyright 2013 Singapore Management University

 - 2 -

animation to design games. We then describe our design for
PlaySketch and present a detailed scenario that shows how
it will be used.

RELATED WORK

Animating With Sketches and Demonstration
Researchers have used sketching in numerous ways to make
animation easier. Many have directed 2D or 3D character
animations using a single static sketch [31,36,39] or a
sequence of static sketches [4]. Static sketches have also
been used to direct 2D physical simulations of rigid bodies
[1] and fluid systems [41].

Static sketches cannot easily capture the relative timing of
multiple object motions, nor can they capture the relative
speed of different parts of one motion path. However,
animation systems that use real-time demonstration to
record object motions can easily capture relative timing and
speed by taking advantage of users’ intuitive sense of time.
Serveral 2D animation systems that capture real-time
demonstration of sketched objects have shown benefits for
novices, including K-Sketch [6], Sketch-n-Stretch [34], and
idAnimate [24]. The animation interface for PlaySketch
will be very similar to these systems. We will also borrow
ideas from PhysInk [30], which uses demonstrated motions
to direct physical simulations.

Real-time demonstration has been used in other ways that
make animation easy for novices. Igarashi and colleagues
used demonstration on multi-touch surfaces to animate 2D
deformable characters [11]. Barnes and colleagues used
video to capture demonstrated motions of 2D paper cutouts
[2], while Held and colleagues used a Kinect sensor to
capture demonstrated motions of 3D objects [10]. We
consider these techniques to be outside the scope of this
project, but any method for demonstrating 2D animation
could be integrated into our design.

Enabling Childen to Make Video Games
Game builders for children come in a variety of styles.
Some are for 2D games [8,21,25,27,33], some are for 3D
games [14,15,26], and a small number support both [43].
Some have a high level of polish and come with ready-
made graphics and sound [8,14,15], while others rely on
children to create or obtain their own content [25,26,27,33].
Some constrain they types of games allowed [8,43], others
constraint the types of motion allowed [25,26,32,33], and
others seek to support games of any style that are arbitrarily
complex [27]. The latter type of systems are said to have
“wide walls” and a “high ceiling” [27]. Because
PlaySketch’s interface is based on 2D animation sketching,
we will focus on 2D games and child-created content, but
we may allow uploading of images as well. We also seek a
high ceiling and wide walls, but using PlaySketch will be
easiest with games that fall into established genres.

Kelleher and Pausch’s taxonomy of novice programming
systems gives us a useful way of categorizing systems that

empower kids to make games [13]. Many systems try to
make it easier to write programs. Some do this by
simplifying interaction with the programming language
(e.g., with drag & drop tools), such as Scratch [27],
AgentSheets [25], AgentCubes [26], and Kodu [14], and
Mission Maker [3,15]. Others try to make the language
more understandable. Hands [21], for example, was
designed through studies of how children naturally express
game behavior. We borrow many good ideas from these
systems, but our goal is to help children avoid writing
programs altogether, not to make writing programs easier.

When systems seek to free children from writing programs,
they usually use one of two approaches for defining object
behavior. The more common approach is to allow behaviors
to be selected from a list of choices, usually with a menu of
options for each behavior. This approach is taken by
Gamestar Mechanic [8,28] and Sploder [43]. This approach
does not easily support a high ceiling or wide walls,
because the number of behaviors and options can become
too large to search through. The less common approach is
to allow definition of object behaviors using programming
by demonstration (PBD), as in Stagecast Creator [33].
PlaySketch will use this approach, because we believe that
combining it with animation sketching will make it easier to
define a wide variety of behaviors (as explained later).
However, Playsketch will allow children to select behaviors
and options from a list when PBD fails.

While we seek to free children from writing programs,
PlaySketch will need a way to show inferred game logic to
children so they can accept or reject it. Some of the systems
described here show game logic in a style that mimics
procedural programming models and control structures
[27]. Others use a simpler event-based style that requires all
statements to be rules of the form “when <condition> do
<action>” [14,21,25,26,33]. While the procedural style can
be more powerful (higher ceiling), PlaySketch will use the
event-based style, because it more closely matches
children’s natural way of expressing game behavior [22].
Such rules also match the form of inferences that can be
made with PBD. Also note that all the systems here
represent programs graphically, except for Hands [21],
which uses text only. We will use a graphical representation
because it is easier modify on tablet computers.

Finally, it is worth mentioning that some children move to
more powerful tools when they go looking for a higher
ceiling or wider walls. Tools like GameMaker [40], Sencyl
[35], Construct [29], and Fusion [4] are intended for
designers with little or no programming skill who want to
create and distribute high-quality games. These tools share
much in common with the other tools listed here, but the
need to support a high level of polish makes them more
complex. We will not seek to support this level of polish.
However, Stencyl and Construct both have an interesting
blend of ideas found in other tools: common behaviors can
be chosen from a list, while uncommon behaviors can be

 - 3 -

programmed. We use a similar approach in PlaySketch by
separating pre-defined “behaviors” from “events,” which
are less common and more complex.

Programming by Demonstration
PlaySketch will use PBD techniques to free children from
writing programs, but it will not free them from interpreting
or modifying programs. For this reason, our approach is
more similar to what Nardi calls “automatic programming
by informal program specification” [20] rather than
classical PBD. Children will use sketched animation to
specify game requirements that are automatically turned
into game programs. We borrow ideas from systems
discussed previously to make game programs easy to
interpret. These programs can then be refined either by
sketching more animations or by modifying the program.
Our contributions lie in how programs are demonstrated
and inferred, how inferences are presented, and how
programs are edited, all of which have been open PBD
problems for decades [19].

As mentioned earlier, most PBD systems for games use
demonstrated behavior to infer rules of the form “when
<condition> do <action>.” In Stagecast Creator [33]
(formerly called KidSim [32]), all rules are graphical
rewrite rules. Objects exist on a grid, and children can
demonstrate rules that specify how one configuration of
objects should be “rewritten” in another configuration.
PlaySketch does not use this approach, because many
common behaviors in video games are hard to define on a
grid or with rewrite rules.

Stimulus-response [38] is a more general PBD approach
that splits inference into at least two stages: conditions
(stimulus) and actions (response). An important factor in
these systems is the set of modes that users must be aware
of. Pavlov [37] had five modes: draw, test, stimulus,
response, and real-time response (for demonstrated
animation). This required users to be explicit in their
intention to demonstrate both stimuli and responses.

Gamut [18] is a stimulus-response PBD system with four
modes: build, test, “Do Something!” (for adding new
responses) and “Stop That!” (for stopping unwanted
responses). Users did not need to be explicit about
demonstrating stimuli, because stimuli were inferred at the
moment users clicked “Do Something!” or “Stop That!”
PlaySketch will be more like Gamut in this respect, but it
will require only two modes: draw and run. The run mode
will be used for recording animated run-throughs of a game,
testing a game, and reviewing existing run-throughs.
Whenever new behavior is recorded, PlaySketch may make
inferences.

There are two other similarities between PlaySketch and
previous stimulus-response PBD systems. Because children
will be able to create multiple sketches of gameplay,
PlaySketch can use Gamut’s method for inferring behavior
from multiple examples [17]. Also, Pavlov [37] could

record demonstrated animation as PlaySketch will, but
Pavlov had one timeline for each response, while
PlaySketch will have one timeline for each animated run-
through. There are few other notable similarities between
PlaySketch and existing PBD systems. Our use of animated
run-throughs together with our methods for displaying and
editing game behavior will make PlaySketch very different
from any exiting PBD system for games.

A STUDY OF CHILDREN DESIGNING WITH ANIMATION
To assess children’s ability to design games with sketched
animation, we conducted a study where we asked children
to design games in three media: written words, static
sketches, and animation [5]. Here we give a brief overview
of this study and its major findings.

In this study, we guided children through a design process
by asking four questions: how do you control the main
character, what is the goal, what are the obstacles, and how
do you win? Children answered all questions in one
medium (written words, static sketches, and animation)
before moving to the next. We looked for differences
between media by comparing design artifacts. We also
observed children’s behavior as they worked.

This study was run in four different sessions at community
centers in the United States. Fifteen children age 7-14 years
old took part, some working individually and some in pairs.
Of these, five individuals (3 boys and 2 girls) and two pairs
(all girls) completed designs in all three media. One of
these children had participated in a summer workshop for
making video games, but the others had no experience
making animation or video games. All children worked
with writing or sketches first before using animation.
Animations were created with K-Sketch after 15 minutes of
practice.

Figure 1 shows the average number of game elements
found in artifacts of each type. Children expressed an
unusually high number of action elements when using
animation. For most other types of elements, the number
was comparable to written words or static sketches. This

Figure 1: Average number of game elements found in
teams’ design artifacts, by medium and element type.

 - 4 -

shows that children are able to express video game behavior
with sketched animation, and it hints that sketched
animation may be especially suited to capturing behavior in
action games.

When we looked at how children made use of animation,
we noticed three patterns: exploring motion timing,
storytelling, and collaborating. The first pattern captures
the way children iteratively refined their animations as they
explored the relative timing of objects that moved
simultaneously. This gave children an opportunity to
experiment with different game mechanics. For example,
Figure 2 shows an animation of a turret shooting a spinning
ball at a moving airplane. The child started by drawing and
moving the airplane, then drew the ball and made it spin,
and finally moved the ball from the turret so that it missed
the airplane. Later, the child modified the animation to
make the ball bounce off the airplane.

In the storytelling pattern, children laid out the narrative of
their game. For example, Figure 3 shows an animation of a
boy sneaking up behind an angry woman to steal her food.
These animations are usually longer and have few objects
moving in parallel. Sometimes children added text labels to
explain the action. There is less iterative refinement of these
animations, but children did experiment by making multiple
scenes that told slightly different stories. For example, the

child who created Figure 3 created an earlier animation
where the angry woman was hunting for the boy.

Finally, the collaborating pattern showed that children can
easily work together through animated sketches. This
sometimes appeared in the form of turn-taking while
working on a shared sketch. Alternatively, a child might
show an animation to a friend, get a verbal response, and
quickly modify the animation. For example, the child who
made the spinning ball animation in Figure 3 showed it to a
friend who said, “What if the blob bounced off the
airplane?” Within seconds, the child had modified the
animation to show the ball hitting the airplane and bouncing
off.

This study gives evidence that children can express game
behavior with animation sketches about as easily as they
can with words or static sketches. Animations are
particularly good at capturing the relative timing of moving
objects as well as the sequence of events in a story. Also,
children can collaborate around animation sketches as they
do around static sketches. These are indicators that sketched
animation is an excellent medium for exploring a game
design space and that a PBD engine will have rich data for
inferring game behavior.

PLAYSKETCH USER INTERFACE DESIGN
We are building PlaySketch, a system that will help
children make video games without writing programs.
Figure 4 shows our concept for the PlaySketch user
interface. The interface has been designed for multi-touch
tablets like the iPad, which are becoming popular in
educational environments. Games are divided into scenes,
which can share actors. Scenes have two views. The Scene
view (shown in Figure 4) is where Children will spend most
of their time. The Events view is for looking “under the
hood” at the most complex game logic, as explained later.

Instead of making games by writing code, assembling
blocks, or selecting options, children will use animation-
sketching techniques to make run-throughs of game
activity. PlaySketch will use these sketched run-throughs to
infer properties, behaviors, and events, which are the
fundamental building blocks of game logic. To help
children through this process, PlaySketch will give them
notifications that explain how inferences are made and
allow them to be corrected. Also, children can avoid
automatic inferences with pre-defined actors. The following
sections will explain these aspects of the PlaySketch user
interface.

Sketching Animations
PlaySketch’s Scene view will be similar to K-Sketch [6].
This view has two modes: draw and run. The view opens in
draw mode with an empty timeline. Drawing or
manipulating objects in this mode changes the initial state
of the scene. Children can switch to run mode by pressing
the run button (Figure 4h). In run mode, PlaySketch will

Figure 2: Child-created animation of a turret shooting a
spinning ball at a moving airplane.

Figure 3: Child-created animation of a boy sneaking up
behind an angry woman and stealing her food.

 - 5 -

record all game behavior and object manipulations in real
time. Tapping on a selected object once also causes the next
drag operation to be recorded (a handy shortcut).

The behavior of run mode depends on the current selection
and the state of the timeline (as shown in the time slider bar
in Figure 4g). If no object is selected, then the behavior is
straightforward. Running with an empty timeline will test
the game in its current state, recording a run-through of
game activity. Rewinding and pressing run again will
review the recoded run-through.

If an object is selected, then manipulating that object in run
mode may cause PlaySketch to infer new game logic. If the
object is not an actor, then it will be converted into an actor.
Manipulating an actor in run mode will override any
behavior or events that would normally determine that
actor’s movement. Furthermore, after a run-through has
been recorded, rewinding and manipulating an actor in the
middle of a recorded run-through will overwrite any
previously recorded activity. This will give children a way
to correct an actor’s behavior when they notice that it did
not behave as it should have.

Inferring Properties, Behaviors, and Events
Whenever the Watch Me button is pressed, PlaySketch may
respond to a child’s actions by inferring properties,
behaviors, or events. Properties include the most common
game play attributes, including, runtime attributes (e.g.,
position, health, or inventory), physical constants (e.g.
gravity or mass), and some other options (e.g., can rotate or
affected by gravity). The two most important properties,
however, are genre (for scenes) and role (for actors). These
properties are listed first, and they influence how
PlaySketch will make inferences from demonstrated
motions. Genre and role may also constrain other
properties. For example, setting the genre to platformer will
turn on gravity for the scene.

Behaviors are special properties that can be added to
determine how actors move. Behaviors are more varied and
complex than properties, but each game will need only a
few of them. Behaviors come in several types. Control
behaviors map commands to specific types of motion (e.g.,
2-way directional control or jump control). AI behaviors
work with control behaviors to make actors move
automatically (e.g., patrol AI, pursue AI, or evade AI).
Game behaviors specify constraints (e.g., player cannot

Figure 4: A mock-up of the PlaySketch interface. (a) Back to list of scenes. (b) Switch between Scene view (shown) and Events
view. (c) Tool palette: select, draw, erase, text, and image. (d) Create new animation sketch. (e) Turn inferencing on/off. (f)

Collapsible view showing available actors and properties for the scene or the selected actor. (g) Time slider bar for reviewing
current animation sketch. (h) Run button. (i) Selected actor. (j) Motion path.

 - 6 -

leave scene) or ending conditions (e.g., win when enemies
are dead). These pre-defined behaviors are listed with the
properties of the scene or an actor. Behaviors may have
their own properties, and they may also constrain other
properties. For example, the jump behavior has an
acceleration property, and the 2-way direction control
constrains an actor’s can rotate property to false and its
affected by gravity property to true.

Events are used for game logic that does not fit into any
property or behavior. Events have the form “WHEN
<condition> DO <action>”. Figure 5 shows what an event
will look like when viewed in the Events view. Note that
events can be modified by adding, removing, or changing
conditions and actions, which allows them to be
programmed manually, should the need arise. This is the
highest level of complexity that PlaySketch will reveal, but
it will be kept hidden in the Events view so that it will not
confuse children under normal conditions.

Notifications and Pre-defined Actors
While these properties, behaviors, and events may seem
complex, it is important to remember that children do not
need to remember or understand all of them. Children will
focus most of their attention on making animations that
show how the game works. When PlaySketch makes an
inference, it will show a notification like the one in Figure
6. If a child dismisses the notification (by pressing “X”) or
presses “No”, then nothing will change. If they look at the
notification but do not understand it, they can press
“More…” to learn the meaning of any special terms, see
how their actions led to that inference, and make changes.
This way, children will learn just enough detail to
understand how PlaySketch can help them build their
particular game, and they should quickly learn to respond
“Yes” or “No” to a notification without too much thought.

Another way children can avoid complexity is by using pre-
defined actors (see Figure 4f). These actors come pre-
configured with a role and some behaviors. Using pre-
defined actors can be much easier than programming by

demonstration, but it would limit what children can do, and
it could require them to sift through a many options.

There are three key ideas behind this design. First, sketched
run-throughs will enable children to demonstrate how their
game should function. Second, splitting game logic
between properties, behaviors, and events creates three tiers
of increasing complexity. Properties are the most common
and simplest, behaviors more complex (but not all need to
be understood), and events are the most complex and least
common. These tiers limit what children must understand to
use PlaySketch, because less needs to be known about the
more complex tiers. Third, PlaySketch will help children
through the process of demonstrating game logic with
notifications that explain inferences and pre-defined objects
that help them avoid automatic inferences. In the following
section, we show how these ideas will play out in practice.

MAKING A PLATFORM GAME WITH PLAYSKETCH
Let’s see how the different parts of the PlaySketch user
interface will work together in the following scenario. A
child wishes to make a platform game with a character that
runs and jumps to avoid an monster. When her character
picks up a power-up item, the monster will run away from
her. In everything that follows, we assume that the child has
pressed “Watch Me” and expects PlaySketch to make
suggestions.

The child begins by creating a new scene, drawing the
platforms and her character, and selecting her character (see
Figure 7a). The child then taps the manipulator once and
drags the character to demonstrate a jumping motion (see
Figure 7b). Tapping the manipulator indicates that the drag
will be performed in run mode, so this motion is recorded
and the time slider advances.

After the motion is recorded, PlaySketch attempts to infer
properties, behaviors, or events. Since the scene genre and
actor role have not been chosen, PlaySketch tries to infer
them from the current state of the game and the interaction
history. After examining the configuration of objects and
the pattern of motion, PlaySketch suggests the platformer
genre. Because this actor is the first to be moved,
PlaySketch assumes its role is player. The child is notified
of these suggestions (see Figure 7c) and asked to approve
them. If any terms are unfamiliar, the child can press More
in a notification to learn about the platformer genre, the
player role, and alternatives for each. In this case, the child
presses Yes to accept both suggestions.

Once the scene genre and the actor role have been chosen,
PlaySketch will make more inferences (see Figure 7d).
Since the platformer genre has gravity, PlaySketch will use
the player’s motion to infer gravity’s acceleration in this
scene. Since most players in the platform genre have a two-
way direction control behavior, PlaySketch will suggest this
behavior to the player. The motion path looks like a jump,
so PlaySketch will also suggest a jump control behavior.
The movement speed and acceleration applied when

Figure 5: An event as it will appear in the Events view.

Figure 6: Notifications like this one will appear in the
upper-left corner when inferences are made.

 - 7 -

jumping are also inferred from the motion path. The child
reviews and accepts these notifications. After accepting, the
player’s motion path changes slightly to make it consistent
with the two-way direction and jump controls.

Now it’s time to add the monster. The child rewinds to the
beginning of the animation, draws the monster on the
bottom platform, and selects it (see Figure 7e). Now she
taps the manipulator once and records a motion of the
monster moving back and forth on the platform (see Figure
7f). The player also moves while she records the monster’s
movement, but the two actors do not interact, because
actors with no role pass through other actors by default.
Since the monster is the second actor that moved,
PlaySketch suggests that its role should be enemy (see
Figure 7g), and the child accepts. By default, enemies have
a hurt on touch behavior that is configured to kill players.

This behavior is added automatically, without an additional
notification.

After the enemy’s role has been determined, PlaySketch
tries to infer more about the enemy (see Figure 7h). A two-
way direction control behavior is suggested, since most
characters in the platformer genre move this way. Because
the enemy’s motion is repetitive, PlaySketch suggests the
patrol AI behavior, which uses any control behaviors to
move a character in a repeating pattern. And as before, the
enemy’s motion path is used to infer behavior properties:
the direction control’s movement speed and the AI’s patrol
path. The child accepts these suggestions as well. Now her
game has two characters, movement controls, and obstacles.
Her game is already playable!

Now the child adds the power-up item that will make the
enemy run away. She starts by pressing New Sketch, which

Figure 7: Creating a simple platform game in which a player must jump over a patrolling enemy. The system begins by
inferring the game genre and actor roles, and then infers behaviors and physical constants.

 - 8 -

creates a new sketch with the same setup as the current
sketch but with no recorded activity. To add the power-up,
she drags a pre-defined star actor from the actor palette,
because the appearance of the power-up item is not
important to her (see Figure 8a). The star actor comes pre-
configured with the item role and the allow pick up
behavior, which means that players who touch the star will
remove it from the scene and add it to their inventory. This
role and behavior could also be inferred for a normal
drawing by moving the payer on top of it and erasing it
when they touch. Using the pre-defined actor saves her the
trouble.

With the item added to the scene, the child can demonstrate
the enemy running away after it is picked up. She selects
the player, presses the run button, and uses the two-way
direction control and the jump control to avoid the enemy
and pick up the item (see Figure 8b). She then presses the
run button again to stop recording, rewinds to the moment
when the player picked up the item, and selects the enemy
(see Figure 8c). After tapping on the manipulator, she can
use the two-way direction control to record the enemy’s
movement away from the player (see Figure 8d). This
control moves the enemy instead of the player, because the
enemy was selected.

Once the enemy’s movement is complete, PlaySketch tries
to infer why the child made this change. Since the
movement began at the moment when the player picked up
the item, PlaySketch infers that this may have caused
something to happen. The enemy’s motion path is
consistent with running away from the player, so
PlaySketch suggests adding an evade AI behavior to the
enemy and an event that switches from patrol AI to evade
AI when the item is picked up (see Figure 8e). After the
child accepts these suggestions, the event will be visible in
the Events view (see Figure 8f). Events like these are the
most complex type of inference that PlaySketch will be able
to make, and they are similar to the inference made by
Gamut [17].

This scenario could continue with the child demonstrating
how the item should disappear from the player’s inventory
after a few seconds and how the enemy should return to
patrol behavior. All of these can be demonstrated easily by
changing properties or demonstrating motions. The child in
this scenario needs to understand only a small number of
properties and behaviors and only one event. Notifications
help her to understand the inferences that PlaySketch made,
and a pre-defined actor give her a short-cut to avoid a
longer inference process.

Figure 8: Adding a power-up item that makes the enemy run away. Creating a new sketch copies the initial setup from the
previous sketch. The pre-defined star actor comes with a role (Item) and some behaviors. Demonstrating the enemy’s

movement causes an event to be inferred.

 - 9 -

FUTURE WORK
There are three challenges that we must overcome to realize
the vision presented in this paper. First, we must define a
set of properties and behaviors that match children’s own
categories as closely as possible. Second, we must develop
sketch-understanding techniques that will match
demonstrated motions to properties and behaviors. Finally,
we must develop rules that will allow a programming by
demonstration system to infer events from common
modifications that children make. We have only begun to
tackle these challenges, and we are looking for
collaborators.

CONCLUSION
We have presented a preliminary design for PlaySketch, a
tool that will allow children to build video games through
animation sketching and programming by demonstration.
Our preliminary study shows that children take naturally to
expressing game behavior with animation sketches. Our
user interface design frames the video game building
process as a series of animation sketches. Sketches are
created by drawing game objects and then demonstrating
their movement, by recording a normal run-through of the
game, or by modifying an existing run-through.

The game logic that PlaySketch infers will use terms that
are similar to children’s own categories for such logic.
There will be three types of logic. Properties, the simplest
type, will include high level attributes like scene genre and
actor role, as well as physical constants. Behaviors will be
more complex and more varied, but each game will need
only a few of them. Events will be the most complex type
of game logic, but they will also be the most rare. Splitting
inference types into these three levels will limit what
children must understand to make sense of the inference
process.

PlaySketch will notify children whenever an inference is
made. These notifications will give them an opportunity to
learn more about what property and behavior terms mean
and about how inferences are made. PlaySketch will also
give children a set of pre-defined actors that will free them
from going through the inference process in some
situations.

We are now in the process of defining PlaySketch’s
properties and behaviors. We hope to find collaborators that
can help us build the sketch understanding and PBD
components that will help us to turn this vision into reality.

REFERENCES
1. Alvarado, C. and Davis, R. Resolving ambiguities to

create a natural sketch based interface. (2001), 1365–
1371.

2. Barnes, C., Jacobs, D.E., Sanders, J., et al. Video
puppetry: a performative interface for cutout animation.
ACM (2008), 1–9.

3. Buckingham, D. and Burn, A. Game Literacy in Theory
and Practice. Journal of Educational Multimedia and
Hypermedia 16, 3 (2007), 323–349.

4. Clickteam LLC. Fusion.
http://www.clickteam.com/clickteam-fusion-2-5.

5. Colwell, B., Davis, R.C., and Landay, J.A. A study of
early stage game design and prototyping. University of
Washington, Seattle, WA, 2008.

6. Davis, R.C., Colwell, B., and Landay, J.A. K-sketch: a
‘kinetic’ sketch pad for novice animators. Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems, ACM (2008), 413–422.

7. Davis, R.C., Steppe, K., Guan, M., Khoo, J.T., Zhang,
R., and Koh, Q.B. Flexible Grouping and Multiple
Centers for Preserving Simplicity and Flexibility in
Animation Sketches. Proceedings of The Asia-Pacific
Conference on Computer Human Interaction, (2013).

8. E-Line Media. Gamestar Mechanic.
http://gamestarmechanic.com/.

9. Games, I.A. and Squire, K. Design thinking in gamestar
mechanic: the role of gamer experience on the
appropriation of the discourse practices of game
designers. Proceedings of the 8th international
conference on International conference for the learning
sciences - Volume 1, International Society of the
Learning Sciences (2008), 257–264.

10. Held, R.T., Gupta, A., Curless, B., and Agrawala, M. 3D
Puppetry: A Kinect-based Interface for 3D Animation.
(2012).

11. Igarashi, T., Moscovich, T., and Hughes, J.F. As-rigid-
as-possible shape manipulation. ACM Press (2005),
1134–1141.

12. Itō, M. and Bittani, M. Gaming. In M. Itō, ed., Hanging
out, messing around, and geeking out  : kids living and
learning with new media. Cambridge, Mass.  : MIT
Press, c2010., 2010, 195–242.

13. Kelleher, C. and Pausch, R. Lowering the Barriers to
Programming: A Taxonomy of Programming
Environments and Languages for Novice Programmers.
ACM Comput. Surv. 37, 2 (2005), 83–137.

14. MacLaurin, M.B. The design of kodu: a tiny visual
programming language for children on the Xbox 360.
SIGPLAN Not. 46, 1 (2011), 241–246.

15. MAGiCAL Projects. MissionMaker.
http://www.immersiveeducation.eu/index.php/missionm
akerm.

16. Margolis, J., Estrella, R., Goode, J., Holme, J.J., and
Nao, K. Stuck in the Shallow End: Education, Race, and
Computing. MIT Press, 2008.

17. McDaniel, R.G. and Myers, B.A. Building applications
using only demonstration. Proceedings of the 3rd
international conference on Intelligent user interfaces,
ACM (1998), 109–116.

18. McDaniel, R.G. and Myers, B.A. Getting more out of
programming-by-demonstration. Proceedings of the
SIGCHI conference on Human Factors in Computing
Systems, ACM (1999), 442–449.

 - 10 -

19. Myers, B.A. Demonstrational Interfaces: A Step Beyond
Direct Manipulation. Computer 25, 1992, 61–73.

20. Nardi, B.A. Interaction Techniques for End User
Application Development. In A Small Matter of
Programming: Perspectives on End User Computing.
MIT Press, 1993.

21. Pane, J.F., Myers, B.A., and Miller, L.B. Using HCI
Techniques to Design a More Usable Programming
System. (2002), 198–206.

22. Pane, J.F., Ratanamahatana, C. “Ann”, and Myers, B.A.
Studying the language and structure in non-
programmers’ solutions to programming problems.
International Journal of Human-Computer Studies 54, 2
(2001), 237–264.

23. Peppler, K. and Kafai, Y.B. What videogame making
can teach us about literacy and learning: alternative
pathways into participatory culture. (2007), 369–376.

24. Quevedo-Fernández, J. and Martens, J.-B. idAnimate: A
General-Purpose Animation Sketching Tool for Multi-
Touch Devices. (2013), 38–47.

25. Repenning, A. and Ambach, J. Tactile Programming: A
Unified Manipulation Paradigm Supporting Program
Comprehension, Composition and Sharing. Visual
Languages, IEEE Symposium on, IEEE Computer
Society (1996), 102.

26. Repenning, A. Making Programming Accessible and
Exciting. Computer 46, 2013, 78–81.

27. Resnick, M., Maloney, J., Monroy-Hernández, A., et al.
Scratch: programming for all. Commun. ACM 52, 11
(2009), 60–67.

28. Salen, K. Gaming Literacies: A Game Design Study in
Action. Journal of Educational Multimedia and
Hypermedia 16, 3 (2007), 301–322.

29. Scirra, Ltd. Construct 2.
https://www.scirra.com/construct2.

30. Scott, J. and Davis, R. Physink: sketching physical
behavior. Proceedings of the adjunct publication of the

26th annual ACM symposium on User interface
software and technology, ACM (2013), 9–10.

31. Shen, E.Y.-T. and Chen, B.-Y. Toward gesture-based
behavior authoring. Computer Graphics International
Conference, IEEE Computer Society (2005), 59–65.

32. Smith, D.C., Cypher, A., and Spohrer, J. KidSim:
programming agents without a programming language.
Commun. ACM 37, 7 (1994), 54–67.

33. Smith, D.C., Cypher, A., and Tesler, L. Programming by
example: novice programming comes of age. Commun.
ACM 43, 3 (2000), 75–81.

34. Sohn, E. and Choy, Y.-C. Sketch-n-Stretch: sketching
animations using cutouts. IEEE Computer Graphics and
Applications 32, (2012), 59–69.

35. Stencyl, LLC. Stencyl. http://www.stencyl.com/.
36. Thorne, M., Burke, D., and van de Panne, M. Motion

doodles: an interface for sketching character motion.
ACM Press (2004), 424–431.

37. Wolber, D. Pavlov: an interface builder for designing
animated interfaces. ACM Trans. Comput.-Hum.
Interact. 4, 4 (1997), 347–386.

38. Wolber, D.W. and Myers, B.A. Stimulus-Response
PBD: Demonstrating “When” as well as “What.”In H.
Lieberman, ed., Your Wish is My Command:
Programming by Example. Morgan Kaufmann, San
Francisco: CA, 2001, 321–344.

39. Yonemoto, S. A Sketch-based Skeletal Figure
Animation Tool for Novice Users. (2012), 37–42.

40. YoYo Games, Ltd. GameMaker.
https://www.yoyogames.com/studio.

41. Zhu, B., Iwata, M., Haraguchi, R., et al. Sketch-based
Dynamic Illustration of Fluid Systems. (2011).

42. Zimmerman, E. Gaming Literacy: Game Design as a
Model for Literacy in the 21st Century. Harvard
Interactive Media Review 1, 1 (2007), 30–35.

43. Sploder. http://www.sploder.com/.

